3.84 \(\int \frac{\sec ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=62 \[ \frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B) \tan (c+d x)}{d (a \sec (c+d x)+a)}+\frac{B \tan (c+d x)}{a d} \]

[Out]

((A - B)*ArcTanh[Sin[c + d*x]])/(a*d) + (B*Tan[c + d*x])/(a*d) - ((A - B)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x]
))

________________________________________________________________________________________

Rubi [A]  time = 0.116752, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {4008, 3787, 3770, 3767, 8} \[ \frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B) \tan (c+d x)}{d (a \sec (c+d x)+a)}+\frac{B \tan (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

((A - B)*ArcTanh[Sin[c + d*x]])/(a*d) + (B*Tan[c + d*x])/(a*d) - ((A - B)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x]
))

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx &=-\frac{(A-B) \tan (c+d x)}{d (a+a \sec (c+d x))}-\frac{\int \sec (c+d x) (-a (A-B)-a B \sec (c+d x)) \, dx}{a^2}\\ &=-\frac{(A-B) \tan (c+d x)}{d (a+a \sec (c+d x))}+\frac{(A-B) \int \sec (c+d x) \, dx}{a}+\frac{B \int \sec ^2(c+d x) \, dx}{a}\\ &=\frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B) \tan (c+d x)}{d (a+a \sec (c+d x))}-\frac{B \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{a d}\\ &=\frac{(A-B) \tanh ^{-1}(\sin (c+d x))}{a d}+\frac{B \tan (c+d x)}{a d}-\frac{(A-B) \tan (c+d x)}{d (a+a \sec (c+d x))}\\ \end{align*}

Mathematica [B]  time = 1.1954, size = 224, normalized size = 3.61 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) (A+B \sec (c+d x)) \left ((B-A) \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+\cos \left (\frac{1}{2} (c+d x)\right ) \left (\frac{B \sin (d x)}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}-(A-B) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )\right )}{a d (\sec (c+d x)+1) (A \cos (c+d x)+B)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]*(A + B*Sec[c + d*x])*((-A + B)*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*(-((A - B)*(Log[Co
s[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])) + (B*Sin[d*x])/((Cos[c/2] - Si
n[c/2])*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/
(a*d*(B + A*Cos[c + d*x])*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.044, size = 163, normalized size = 2.6 \begin{align*} -{\frac{A}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{B}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{B}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{A}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{B}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{B}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{A}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{B}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

-1/a/d*A*tan(1/2*d*x+1/2*c)+1/a/d*B*tan(1/2*d*x+1/2*c)-1/a/d/(tan(1/2*d*x+1/2*c)+1)*B+1/a/d*ln(tan(1/2*d*x+1/2
*c)+1)*A-1/a/d*ln(tan(1/2*d*x+1/2*c)+1)*B-1/a/d/(tan(1/2*d*x+1/2*c)-1)*B-1/a/d*ln(tan(1/2*d*x+1/2*c)-1)*A+1/a/
d*ln(tan(1/2*d*x+1/2*c)-1)*B

________________________________________________________________________________________

Maxima [B]  time = 1.00997, size = 265, normalized size = 4.27 \begin{align*} -\frac{B{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{2 \, \sin \left (d x + c\right )}{{\left (a - \frac{a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (d x + c\right ) + 1\right )}} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - A{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

-(B*(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - 2*sin(d*x + c)/
((a - a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1))) - A*(l
og(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(
d*x + c) + 1))))/d

________________________________________________________________________________________

Fricas [B]  time = 0.482214, size = 319, normalized size = 5.15 \begin{align*} \frac{{\left ({\left (A - B\right )} \cos \left (d x + c\right )^{2} +{\left (A - B\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left ({\left (A - B\right )} \cos \left (d x + c\right )^{2} +{\left (A - B\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left ({\left (A - 2 \, B\right )} \cos \left (d x + c\right ) - B\right )} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(((A - B)*cos(d*x + c)^2 + (A - B)*cos(d*x + c))*log(sin(d*x + c) + 1) - ((A - B)*cos(d*x + c)^2 + (A - B)
*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*((A - 2*B)*cos(d*x + c) - B)*sin(d*x + c))/(a*d*cos(d*x + c)^2 + a*d
*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sec ^{2}{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx + \int \frac{B \sec ^{3}{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*sec(c + d*x)**2/(sec(c + d*x) + 1), x) + Integral(B*sec(c + d*x)**3/(sec(c + d*x) + 1), x))/a

________________________________________________________________________________________

Giac [A]  time = 1.32645, size = 147, normalized size = 2.37 \begin{align*} \frac{\frac{{\left (A - B\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{{\left (A - B\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a} - \frac{2 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

((A - B)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - (A - B)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - (A*tan(1/2*d*x
+ 1/2*c) - B*tan(1/2*d*x + 1/2*c))/a - 2*B*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a))/d